skip to main content


Search for: All records

Creators/Authors contains: "Escobar, Luis E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Neglected tropical diseases affect the most vulnerable populations and cause chronic and debilitating disorders. Socioeconomic vulnerability is a well-known and important determinant of neglected tropical diseases. For example, poverty and sanitation could influence parasite transmission. Nevertheless, the quantitative impact of socioeconomic conditions on disease transmission risk remains poorly explored.

    Methods

    This study investigated the role of socioeconomic variables in the predictive capacity of risk models of neglected tropical zoonoses using a decade of epidemiological data (2007–2018) from Brazil. Vector-borne diseases investigated in this study included dengue, malaria, Chagas disease, leishmaniasis, and Brazilian spotted fever, while directly-transmitted zoonotic diseases included schistosomiasis, leptospirosis, and hantaviruses. Environmental and socioeconomic predictors were combined with infectious disease data to build environmental and socioenvironmental sets of ecological niche models and their performances were compared.

    Results

    Socioeconomic variables were found to be as important as environmental variables in influencing the estimated likelihood of disease transmission across large spatial scales. The combination of socioeconomic and environmental variables improved overall model accuracy (or predictive power) by 10% on average (P < 0.01), reaching a maximum of 18% in the case of dengue fever. Gross domestic product was the most important socioeconomic variable (37% relative variable importance, all individual models exhibitedP < 0.00), showing a decreasing relationship with disease indicating poverty as a major factor for disease transmission. Loss of natural vegetation cover between 2008 and 2018 was the most important environmental variable (42% relative variable importance,P < 0.05) among environmental models, exhibiting a decreasing relationship with disease probability, showing that these diseases are especially prevalent in areas where natural ecosystem destruction is on its initial stages and lower when ecosystem destruction is on more advanced stages.

    Conclusions

    Destruction of natural ecosystems coupled with low income explain macro-scale neglected tropical and zoonotic disease probability in Brazil. Addition of socioeconomic variables improves transmission risk forecasts on tandem with environmental variables. Our results highlight that to efficiently address neglected tropical diseases, public health strategies must target both reduction of poverty and cessation of destruction of natural forests and savannas.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available August 1, 2024
  3. Ren, Lin-Zhu (Ed.)

    Most pathogens infect more than one host species, and given infection, the individual-level impact they have varies among host species. Nevertheless, variation in individual-level impacts of infection remains poorly characterised. Using the impactful and host-generalist ectoparasitic mite Sarcoptes scabiei (causing sarcoptic mange), we assessed individual-level variation in pathogen impacts by (1) compiling all documented individual-level impacts of S. scabiei across free-living host species, (2) quantifying and ranking S. scabiei impacts among host species, and (3) evaluating factors associated with S. scabiei impacts. We compiled individual-level impacts of S. scabiei infection from 77 host species, spanning 31 different impacts, and totalling 683 individual-level impact descriptions. The most common impacts were those affecting the skin, alopecia (130 descriptions), and hyperkeratosis coverage (106). From these impacts, a standardised metric was generated for each species (average impact score (AIS) with a 0-1 range), as a proxy of pathogen virulence allowing quantitative comparison of S. scabiei impacts among host species while accounting for the variation in the number and types of impacts assessed. The Japanese raccoon dog (Nyctereutes viverrinus) was found to be the most impacted host (AIS 0.899). We applied species inclusion criteria for ranking and found more well-studied species tended to be those impacted more by S. scabiei (26/27 species AIS < 0.5). AIS had relatively weak relationships with predictor variables (methodological, phylogenetic, and geographic). There was a tendency for Diprotodontia, Artiodactyla, and Carnivora to be the most impacted taxa and for research to be focussed in developed regions of the world. This study is the first quantitative assessment of individual-level pathogen impacts of a multihost parasite. The proposed methodology can be applied to other multihost pathogens of public health, animal welfare, and conservation concern and enables further research to address likely causes of variation in pathogen virulence among host species.

     
    more » « less
    Free, publicly-accessible full text available May 27, 2024
  4. Abstract Background

    Climate change presents an imminent threat to almost all biological systems across the globe. In recent years there have been a series of studies showing how changes in climate can impact infectious disease transmission. Many of these publications focus on simulations based on in silico data, shadowing empirical research based on field and laboratory data. A synthesis work of empirical climate change and infectious disease research is still lacking.

    Methods

    We conducted a systemic review of research from 2015 to 2020 period on climate change and infectious diseases to identify major trends and current gaps of research. Literature was sourced from Web of Science and PubMed literary repositories using a key word search, and was reviewed using a delineated inclusion criteria by a team of reviewers.

    Results

    Our review revealed that both taxonomic and geographic biases are present in climate and infectious disease research, specifically with regard to types of disease transmission and localities studied. Empirical investigations on vector-borne diseases associated with mosquitoes comprised the majority of research on the climate change and infectious disease literature. Furthermore, demographic trends in the institutions and individuals published revealed research bias towards research conducted across temperate, high-income countries. We also identified key trends in funding sources for most resent literature and a discrepancy in the gender identities of publishing authors which may reflect current systemic inequities in the scientific field.

    Conclusions

    Future research lines on climate change and infectious diseases should considered diseases of direct transmission (non-vector-borne) and more research effort in the tropics. Inclusion of local research in low- and middle-income countries was generally neglected. Research on climate change and infectious disease has failed to be socially inclusive, geographically balanced, and broad in terms of the disease systems studied, limiting our capacities to better understand the actual effects of climate change on health.

    Graphical abstract 
    more » « less
  5. Abstract Background

    Vector-borne diseases (VBDs) are important contributors to the global burden of infectious diseases due to their epidemic potential, which can result in significant population and economic impacts. Oropouche fever, caused by Oropouche virus (OROV), is an understudied zoonotic VBD febrile illness reported in Central and South America. The epidemic potential and areas of likely OROV spread remain unexplored, limiting capacities to improve epidemiological surveillance.

    Methods

    To better understand the capacity for spread of OROV, we developed spatial epidemiology models using human outbreaks as OROV transmission-locality data, coupled with high-resolution satellite-derived vegetation phenology. Data were integrated using hypervolume modeling to infer likely areas of OROV transmission and emergence across the Americas.

    Results

    Models based on one-support vector machine hypervolumes consistently predicted risk areas for OROV transmission across the tropics of Latin America despite the inclusion of different parameters such as different study areas and environmental predictors. Models estimate that up to 5 million people are at risk of exposure to OROV. Nevertheless, the limited epidemiological data available generates uncertainty in projections. For example, some outbreaks have occurred under climatic conditions outside those where most transmission events occur. The distribution models also revealed that landscape variation, expressed as vegetation loss, is linked to OROV outbreaks.

    Conclusions

    Hotspots of OROV transmission risk were detected along the tropics of South America. Vegetation loss might be a driver of Oropouche fever emergence. Modeling based on hypervolumes in spatial epidemiology might be considered an exploratory tool for analyzing data-limited emerging infectious diseases for which little understanding exists on their sylvatic cycles. OROV transmission risk maps can be used to improve surveillance, investigate OROV ecology and epidemiology, and inform early detection.

     
    more » « less
  6. Abstract Background

    The term virus ‘spillover’ embodies a highly complex phenomenon and is often used to refer to viral transmission from a primary reservoir host to a new, naïve yet susceptible and permissive host species. Spillover transmission can result in a virus becoming pathogenic, causing disease and death to the new host if successful infection and transmission takes place.

    Main text

    The scientific literature across diverse disciplines has used the terms virus spillover, spillover transmission, cross-species transmission, and host shift almost indistinctly to imply the complex process of establishment of a virus from an original host (source/donor) to a naïve host (recipient), which have close or distant taxonomic or evolutionary ties. Spillover transmission may result in unsuccessful onward transmission, if the virus dies off before propagation. Alternatively, successful viral establishment in the new host can occur if subsequent secondary transmission among individuals of the same novel species and among other sympatric susceptible species occurred. As such, virus spillover transmission is a common yet highly complex phenomenon that encompasses multiple subtle stages that can be deconstructed to be studied separately to better understand the drivers of disease emergence. Rabies virus (RABV) is a well-documented viral pathogen which still inflicts heavy impact on humans, companion animals, wildlife, and livestock throughout Latin America due substantial spatial temporal and ecological—natural and expansional—overlap with several virus reservoir hosts. Thereby, the rabies disease system represents a robust avenue through which the drivers and uncertainties surrounding spillover transmission can be unravel at its different subtle stages to better understand how they may be affected by coarse, medium, and fine scale variables.

    Conclusions

    The continued study of viral spillover transmission necessitates the elucidation of its complexities to better assess the cross-scale impacts of ecological forces linked to the propensity of spillover success. Improving capacities to reconstruct and predict spillover transmission would prevent public health impacts on those most at risk populations across the globe.

    Graphical Abstract: 
    more » « less
  7. Abstract The common vampire bat ( Desmodus rotundus ) is a sanguivorous (i.e., blood-eating) bat species distributed in the Americas from northern Mexico southwards to central Chile and Argentina. Desmodus rotundus is one of only three mammal species known to feed exclusively on blood, mainly from domestic mammals, although large wildlife and occasionally humans can also serve as a food source. Blood feeding makes D. rotundus an effective transmissor of pathogens to its prey. Consequently, this species is a common target of culling efforts by various individuals and organizations. Nevertheless, little is known about the historical distribution of D. rotundus . Detailed occurrence data are critical for the accurate assessment of past and current distributions of D. rotundus as part of ecological, biogeographical, and epidemiological research. This article presents a dataset of D. rotundus historical occurrence reports, including >39,000 locality reports across the Americas to facilitate the development of spatiotemporal studies of the species. Data are available at 10.6084/m9.figshare.15025296 . 
    more » « less
  8. El conjunto de ideas, métodos y programas informáticos que se conoce como “Modelado de Nicho Ecológico” (MNE)—y el relacionado “Modelado de Distribución de Especies” (MDS)—han sido objeto de intensa exploración e investigación en las últimas décadas. A pesar de existir al menos cuatro síntesis publicadas, este campo ha crecido tanto en complejidad, que la formación de nuevos investigadores es difícil. Hasta ahora, dicha formación se ha hecho de manera presencial en cursos organizados por universidades o centros de investigación, de los que hemos formado parte como instructores. Sin embargo, el acceso a este tipo de cursos especializados es restringido, por un lado, porque los cursos no se ofrecen en todas las universidades, y por otro, porque normalmente se imparten en inglés. Para facilitar el acceso a una mayor comunidad de científicos de habla hispana, presentamos un curso en español, completamente digital y de acceso gratuito, que se realizó vía Internet durante 23 semanas consecutivas en 2018. Aunque las barreras intrínsecas al uso de Internet pueden dificultar la accesibilidad a los materiales del curso, hemos usado diversos formatos para la divulgación de los contenidos académicos (video, audio, pdf) con el objetivo de eliminar la mayor parte de estos problemas. 
    more » « less